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A CONJECTURE ON HOMOTOPY GROUPS OF SPHERES,

DETAILS ON THE ALGEBRA OF HIGHER COHOMOLOGY

OPERATIONS

HANS JOACHIM BAUES

To Mamouka Jibladze on his fiftieth birthday

Abstract. The theory of secondary chomology operations leads to a conjec-
ture concerning the algebra of higher cohomology operations in general. This
conjecture is discussed here in detail and its connection with homotopy groups
of spheres and the Adams spectral sequence is described.
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1. Bigraded differential algebras

Let R be a commutative ring. A graded R–module V = (V n)n∈Z is a sequence
of R–modules V n. Let ΣV = V [1] be the suspension of V which is the graded R–
module satisfying (ΣV )n = V n−1. A bigraded R–module W = (Wn

m) is a sequence
of graded R–modules. For x ∈ Wn

m we call n = |x| the degree of x and we call
m = dim(x) the dimension of x. Let Wm = (Wn

m)n∈Z be the graded submodule in
dimension m. A bigraded chain complex (W, d) is given by a differential

(1.1) dm = d : Wm −→Wm−1

with |dx| = |x| and dd = 0. This is a graded object in the category of chain
complexes. The homology Hm(W, d) = kerd/imd is a graded R–module.The m–
truncation of (W, d) is the chain complex

(1.2) trm(W, d) = ( . . .→ 0→ cokdm+1 →Wm−1 →Wm−2 → . . . )

which is concentrated in dimension ≤ m. The m–cotruncation of (W, d) is the chain
complex

cotrm(W, d) = ( . . .→Wm+2 →Wm+1 → kerdm → 0→ . . . )

which is concentrated in dimension ≥ m.
1
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A bigraded algebra A = (An
m) is a bigraded R–module together with a unit

1 ∈ A0
0 and an associative multiplication

(1.3) µ : An
m ⊗As

s → An+r
m+s with µ(x⊗ y) = x · y.

We assume that A is non–negatively graded, that is, An
m = 0 if n < 0 or m < 0.

Let A be the category of bigraded algebras and let A
∐

B be the coproduct in
A. Moreover, for a non–negatively bigraded set E let TR(E) be the free bigraded
algebra generated by E. Then TR(E) is the free R–module generated by the free
monoid Mon(E) consisting of all words e1 . . . et with e1, . . . , et ∈ E and t ≥ 0.

A bigraded differential algebra (A, d) is a bigraded algebra A which is also a
bigraded chain complex satisfying

(1.4) d(x · y) = (dx) · y + (−1)dim(x)x · (dy).

Then the m–truncation trm(A, d) is also a bigraded differential algebra while the
m–cotruncation cotrm(A, d) is an (A, d)–bimodule. The homology of (A, d) is a
bigraded algebra.

For a bigraded module W we have the suspension Σr
sW with (Σr

sW )n
m = Wn−r

m−s.
Let Σr

s : W → Σr
sW be the map given by the identity. If (W, d) is a bigraded chain

complex, then Σr
s(W, d) is also a chain complex with d(Σr

sx) = (−1)sΣr
s(dx).

An element x in a bigraded algebra A is central if, for all y ∈ A, one has
x · y = (−1)dim(x)·dim(y)y · x.

A (bigraded differential) algebra A = (A, d) has a Σ–structure if an element
[1] ∈ A1

1 is given with d[1] = 0 such that [1] is central in H∗(A) and the chain map

(1.5) Σ1
1(A, d)

[1]·
−→ cotr1(A, d)

which carries Σ1
1x to [1] · x induces isomorphisms in homology. This implies that

for m ≥ 0 we have isomorphisms of H0(A, d)–bimodules

Hm(A, d) = ΣmH0(A, d).

In a similar way we define the Σ–structure of a left A–module where A is an algebra
with Σ–structure.

Claim 1.1. Let A be an algebra with Σ–structure and let X and Y be left A–
modules with Σ–structure. Then the bigraded R–module

ExtA(X, Y )

is defined in terms of a“resolution” of X in the category of left A–modules. This
generalizes the secondary Ext–groups studied in [5].

Moreover, we need the following notion of truncated algebras. An (m)–algebra
B is a bigraded differential algebra with Bk = 0 for k ≥ m, or, equivalently,

(1.6) trm−1(B) = B.

For example, the truncation trm−1(A) of a bigraded differential algebra A is an
(m)–algebra. We say that an (m)–algebra B with m ≥ 2 has a Σ–structure if an
element [1] ∈ B1

1 is given with d[1] = 0 such that [1] is central in the homology
algebra H∗(B) and the chain map

(1.7) Σ1
1trm−2(B)

[1]·
−→ cotr1(B)
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induces an isomorphism in homology. This implies that one has an isomorphism of
H0(B)–bimodules

Hk(B) = ΣkH0(B) for 0 ≤ k ≤ m− 1.

A (2)–algebra is the same as a pair algebra considered in [1] and a Σ–structure of a
pair algebra is described in 1.2 of [5]. We also consider, for an (m)–algebra B, the
left B–modules X which are bigraded chain complexes with Xk = 0, for k ≥ m,
and for which B acts from the left on X . Then, if B has a Σ–structure, there is
also a Σ–structure defined for X .

Claim 1.2. Let m ≥ 1 and let B be an (m)–algebra with Σ–structure and let X, Y
be left B–modules with a Σ–structure. Then the graded module

ExtB(X, Y )

is defined in terms of a “resolution” of X in the category of left B–modules.
In fact, for m = 2, this Ext–module coincides with the secondary derived functor
studied in [5], compare chapter 1 in [6]. For m = 1, a (1)–algebra is the same as
a graded algebra and in this case ExtB(X, Y ) coincides with the classical derived
functor.

It is clear that the (m−1)–truncation trm−1(A) of a bigraded differential algebra
A is an m–algebra and that trm−1(A) has a Σ–structure if A has one. A similar
statement holds for the truncation of A–modules.

Claim 1.3. Let A be an algebra with Σ–structure and let X, Y be A–modules with
Σ–structure. Then, for m ≥ 1, one obtains the (m)–algebra B(m) = trm−1(A) and
the B(m)–modules X(m) = trm−1(X) and Y (m) = trm−1(Y ), where B(m), X(m)

and Y (m) have Σ–structures. Hence the graded Ext–modules, m ≥ 1,

Em+1 = ExtB(m)(X(m), Y (m))

are defined. Moreover, (E2, E3, E4, . . . ) form a spectral sequence which converges
to the bigraded module ExtA(X, Y ).

2. The algebra of higher cohomology operations

Let p be a prime number, let F = Z/p be the prime field and let G = Z/p2 be
the quotient ring. Then there is a ring homomorphism G→ F and a canonical long
exact sequence

(2.1) 0←− F←− G
d
←− G

d
←− G

d
←− . . .

where each differential d is given by multiplication with p.

Definition 2.1. Let G∗ be the bigraded algebra over the ring G generated by
elements [1] and [p]s, s ≥ 1, where dim[1] = deg[1] = 1, dim[p]s = 0 and deg[p]s = s.
The relations for G∗ are

[p]s · [p]t = 0 for s, t ≥ 1,

[1] · [p]s = [p]s · [1] for s ≥ 1.

Hence G∗ is free as a G–module generated by the basis elements [1]r · [p]s, for
r, s ≥ 0, where [1]r is the r–th power with [1]0 = [p]0 = 1, the unit of G∗. We define
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a differential d of G∗ by

d[1] = 0

d[p]s = p · [p]s−1 for s ≥ 1.

Hence G0 coincides with the chain complex (2.1).

Lemma 2.2. The element [1] is central in G∗ and the differential algebra G∗ has
a Σ–structure with homology Hn(G∗) = ΣnF, n ≥ 0.

Let G
(m)
∗ = trm−1(G∗) for m ≥ 1. Then G

(1)
∗ = F and, for m = 2, the truncation

(2.2) G
(2)
∗ = ( ΣF⊕ F

d
−→ G )

coincides with the pair algebra GΣ in 12.1.3 of [1].
Let A be the Steenrod algebra over F which is generated by a canonical graded

set EA given by

EA =

{

{Sqi | i ≥ 1} for p = 2,

{β} ∪ {P i, P i
β | i ≥ 1} for p odd.

Compare 5.5.1 in [1]. We consider a bigraded set E with Ek
d empty for d < 0 or

k < 0 or k ≤ d. Moreover,

E0 = EA(2.3)

E1 = graded set of Adem relations(2.4)

E2 = graded set of relations among relations(2.5)

Here E2 is a set of generators of the bimodule KA in 5.5.3 (3) in [1]. We consider
a bigraded differential algebra

(2.6) B∗ = (G∗

∐

TG(E), d)

with inclusion ι and augmentation ε,

G∗
ι
−→ B∗

ε
−→ G∗.

Here ε is the identity on G∗ and carries E to 0. The maps ι and ε are maps of
differential algebras, so that G∗ is a left B∗–module via ε. Using [1] ∈ G∗, the
algebra B∗ has a Σ–structure with

HnB∗ = ΣnA, n ≥ 1,

as gradedA–bimodules, whereA coincides with the graded algebra H0B∗. Morevover,
the differential d = dn : Bn → Bn−1 induces a split morphism dn : cok(dn+1) ։

image(dn) of G–modules.

Claim 2.3. There exists an algebra B∗ with the properties in (2.6), such that the
truncation

B
(2)
∗ = tr1(B∗)

coincides with the pair algebra of secondary cohomology operations computed in
[1]. Moreover, let πS

∗ be the algebra of stable p–local homotopy groups of spheres
with the Adams filtration and let Gr(πS

∗ ) be the associated bigraded algebra. Then
there is an isomorphism of bigraded algebras

Gr(πS
∗ ) = ExtB∗

(G∗, G∗).
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In fact, the spectral sequence of Claim 1.3 coincides with the Adams spectral se-
quence (E2, E3, . . .) which converges to Gr(πS

∗ ). Here we have

E2 = ExtA(F, F) and

Em+1 = Ext
B

(m)
∗

(G
(m)
∗ , G

(m)
∗ ), m ≥ 1.

For m = 2, this equation is proved in [5].

We shall construct the algebra B∗ by the inductive definition of the truncation

B
(m)
∗ , m ≥ 1. For m = 1, we have B

(1)
∗ = A and for m = 2, we get the pair

algebra B
(2)
∗ in [1]. Hence we have to define B

(m)
∗ for m ≥ 3. We do this by the

“strictification” of the higher Steenrod algebra.

3. The higher Steenrod algebra

We define the higher Steenrod algebra [[A]]∗ which generalizes the secondary
Steenrod algebra [[A]] in 2.3 [1].

Let Top∗ be the category of pointed topological spaces and let [[Top∗]] be the
associated groupoid enriched category termed track category. A track H : f ⇒ g
of maps f, g : X → Y in Top∗ is a homotopy class of pointed homotopies f ≃ g.
Let [[X, Y ]] be the groupoid of maps and such tracks and let [X, Y ] = π0[[X, Y ]]
be the set of homotopy classes of maps X → Y . For tracks H : f ⇒ g and
G : h⇒ f let H�G : h⇒ g be the composition of tracks and let 0�

f : f ⇒ f be the
identity track. We have the corresponding composition H�G of homotopies which,
however, is not associative. Therefore we also use Moore homotopies for which the
composition H�G is associative; compare the corresponding notion of Moore loop
spaces in the literature.

Let X ∧Y be the smash product of pointed spaces and, for maps α : P ∧X → Y
and β : Q ∧ Z → X , let α ◦ β be the composite

(3.1) α ◦ β : P ∧Q ∧ Z
P∧β
−→ P ∧X

α
−→ Y.

This pairing is associative. For tracks H : α⇒ α′ and G : β ⇒ β′, we then have a
similar pasting operation H ∗G : αβ ⇒ α′β′.

Recall that the Eilenberg–MacLane space

Zn = K(F, n)

is a topological F–vector space with the properties described in 2.1 [1]. We fix a
homotopy equivalence

(3.2) rn : Zn ∼
−→ ΩZn+1

which is F–linear, see 2.1.7 [1], hence the map rn is adjoint to the composite

rn : Zn ∧ S1 −→ Zn ∧ Z1 µ
−→ Zn+1.

For a pointed space Q let rn : Q ∧ Zn ∼
→ Ω(Q ∧ Zn+1) be adjoint to the map

Q ∧ rn.

Definition 3.1. Let [[Ak]]Q be the following groupoid, k ≥ 1. Objects (α, Hα) in
[[Ak]]Q are sequences of maps in Top∗

α = (αn : Q ∧ Zn −→ Zn+k)n∈N
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together with sequences of Moore homotopies Hα = (Hα,n)n∈N for the diagram

Q ∧ Zn αn //

rn

��

Zn+k

rn+k

��

⇒

Ω(Q ∧ Zn+1)
Ωαn+1 // ΩZn+k+1,

that is, Hα,n : Ωαn+1rn ⇒ rn+kαn. For k ≤ 0, let [[Ak]]Q = 0 be the trivial

groupoid if Q is path connected. If Q = S0 is the zero–sphere, then let [[A0]]S
0

= F

be the discrete groupoid given by F and let [[Ak]]S
0

= 0 for k < 0.

We call the object (α, Hα) strict if Ωαn+1rn = rn+kαn and Hα is the identity
homotopy.

For k > 0, we define morphisms H : (α, Hα) ⇒ (β, Hβ) in the groupoid [[Ak]]Q

by sequences of tracks

H = (Hn : αn ⇒ βn)n∈Z

in [[Top∗]], for which the pasting of tracks in the following diagram coincides with
Hβ,n.

Q ∧ Zn βn // Zn+k

⇑ Hn

Q ∧ Zn

rn

��

αn // Zn+k

rn+k

��

Hα,n

⇒

Ω(Q ∧ Zn+1)
Ωαn+1 // ΩZn+k+1

⇓ ΩHn+1

Ω(Q ∧ Zn+1)
Ωβn+1

// ΩZn+k+1

That is, the following equation holds in [[Top∗]],

Hβ,n = (ΩHn+1)rn�Hα,n�rn+kHop
n .

Composition in [[Ak]]Q is defined by (H�G)n = Hn�Gn. One readily checks that
[[Ak]]Q is a well-defined groupoid. Moreover, there is a composition functor between
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groupoids

(3.3) [[Ar ]]P × [[Ak]]Q
◦
−→ [[Ak+r ]]P∧Q

which is defined on objects by

(α′, Hα′) ◦ (α, Hα) = (α′
n+k ◦ αn, Hα′,n+k ∗Hα,n)n∈Z,

where ∗ is the pasting operation. Moreover, on morphisms H : (α, Hα) ⇒ (β, Hβ)
and H ′ : (α′, Hα′)⇒ (β′, Hβ′), the composition functor is defined by

H ◦H ′ = (H ′
n ∗Hn : α′

n ◦ αn ⇒ β′
n ◦ βn)n∈Z.

Lemma 3.2. The groupoid [[Ak]]Q is an F–vector space object in the category of
groupoids.

Proof. This follows since Zn is a topological F–vector space and the maps rn for
Zn are F–linear. �

A map f : P → Q induces a functor between groupoids

f∗ : [[Ak]]Q −→ [[Ak]]P

which carries (α, Hα) to (α(f ∧ 1), Hα(f ∧ 1)) and H : (α, Hα)⇒ (β, Hβ) to f∗H
with (f∗H)n = H(f ∧ 1).

Remark 3.3. Let HF be the Eilenberg–MacLane spectrum. Then the spectrum
Q ∧HF is defined and the graded set of homotopy classes of maps Q ∧HF→ HF

in the cagetory of spectra coincides with (π0[[A
k]]Q)k∈Z. In particular, for Q = S0,

we obtain π0[[A
k]]S

0

= Ak, where A is the Steenrod algebra.

There is an equivalence of graded groupoids

[[A]]S
0 ∼
−→ [[A]],

where [[A]] is the secondary Steenrod algebra defined in 2.5. [1]. In fact, [[A]] is

defined in the same way as [[A]]S
0

, except that the Moore homotopies Hα,n above
correspond to the tracks Hα,n in the definition of [[A]].

Definition 3.4. Let Sd be the sphere of dimension d. The higher Steenrod algebra
is the bigraded groupoid

[[A]]∗ =
(

[[Ak]]S
d)

k,d∈Z

Here k is the degree and d is the dimension. For k < 0 or d < 0, let [[Ak]]S
d

= 0
be the trivial groupoid. We have the associative pairing between groupoids (since
Sd ∧ Sℓ = Sd+ℓ)

[[Ar]]S
d

× [[Ak]]S
ℓ ◦
−→ [[Ak+r ]]S

d+ℓ

.

Here [[Ar]]S
d

is an F–vector space object in the catgeory of groupoids. The
pairing, however, is not bilinear, but linear on the left hand side, that is, (α + α′) ◦
β = α ◦ β + α′ ◦ β. Hence [[A]]∗ is a monoid in the category of bigraded groupoids
and, due to the F–vector space structure, a near F–algebra, not an F–algebra object.

The secondary Steenrod algebra [[A]] in 2.5 [1] corresponds to the dimension 0

part of the higher Steenrod algebra [[A]]∗, that is, [[A]] ∼ [[A]]S
0

. This indicates
how to generalize the methods in the book [1] for the study of [[A]]∗.

Let ΣkA be the k–fold suspension of the Steenrod algebra A which is an A–
bimodule.
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Lemma 3.5.

π0

(

[[A]]S
d)

= ΣdA.

Proof. The maps Sd ∧ HF → HF between spectra correspond to the elements in
ΣdA. �

For a groupoid [[G]], let [[G]]0 be the set of objects and let [[G]]1 be the set of
morphisms in [[G]]. Moreover, if [[G]] is pointed by 0, then let [[G]]01 be the set of
morphisms H : f ⇒ 0, see 5.1.1 [1]. Let ∂ : [[G]]01 → [[G]]0 be defined by ∂H = f .

Lemma 3.6. There is an exact sequence of graded F–vector spaces (d ≥ 0)

0 −→ Σd+1A −→ [[A]]S
d

01
∂
−→ [[A]]S

d

0 −→ ΣdA −→ 0

Moreover, there is a strict element [1] ∈ [[A1]]S
1

0 mapping to Σ1 ∈ ΣA.

Proof. The element [1] is given by the composite

αn : S1 ∧ Zn T
−→ Zn ∧ S1 rn−→ Zn+1 τn−→ Zn+1,

where T is the interchange map and rn is defined in (3.2). Moreover, τn ∈ σn+1 is
the permutation of {1, . . . , n} and (n+1). Then Hα,0 = 0� is the trivial homotopy.
One readily checks that the map [1] is well–defined. �

Let Dd+1 be the (d + 1)–ball (or (d + 1)–disc) given by the reduced cone of the
sphere Sd. We have the inclusion ι : Sd ⊂ Dd+1 of the boundary and the quotient
map q : Dd+1 → Dd+1/Sd = Sd+1.

Lemma 3.7. The maps ι and q induce an exact sequence of F–vector spaces

[[Ak]]S
d+1

0
q∗

−→ [[Ak]]D
d+1

0
∂=ι∗

−→ [[Ak]]S
d

0 .

Moreover, there is a surjective F–linear map

[[Ak]]D
d+1

0

π
։ [[Ak]]S

d

01

which carries a map H, considered as a homotopy H : α→ 0 with α = ∂H, to the
associated track.

Let I = [0, 1] be the unit interval and, for d ≥ 0, let Id = I ∧ . . . ∧ I be the
d–fold smash product of I which is the 0–sphere for d = 0. For d > 0, we fix a
homeomorphism λ : Id → Dd, so that λ induces an isomorphism of F–vector spaces

(3.4) λ∗ : [[Ak]]D
d ∼= [[Ak]]I

d

.

Since Id ∧ Iℓ = Id+ℓ, we have the associative multiplication

(3.5) [[Ar]]I
d

× [[Ak]]I
ℓ ◦
−→ [[Ak+r ]]I

d+ℓ

which is F–linear on the left hand side.
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4. The inductive definition of B∗

The algebra B∗ of higher cohomology operations with the properties in Section
2 is defined inductively as a strictification of the higher Steenrod algebra [[A]]∗ in
Section 3. As in (2.6), we have

B∗ = (G∗

∐

TG(E), d)

B
(m)
∗ = trm−1(B∗), m ≥ 1.

We define inductively B
(m)
∗ and the m–dimensional part Em of the bigraded set

E, m ≥ 0.

We observe that B0 = TG(E0) and that B∗ is free as a G–module with basis
elements given by the words

(4.1) α0g1α1g2α2 . . . gkαk,

where k ≥ 0, αi ∈ Mon(E), with α1, . . . , αk−1 different from 1 and gi ∈ {[1]n[p]t, s, t ≥
0, s + t > 0}.It is clear that Bs depends only on the elements [1]s[p]t and on the
sets E0, E1, . . . , Es.

The (m)–algebra B
(m)
∗ will be constructed as a pull back diagram of G–modules,

m ≥ 2,

(4.2) B
(m)
m−1

d

��

sm−1 // [[A]]S
m−2

01

∂

��
ker(dm−2)

sm−2 // [[A]]S
m−2

0

Here B
(m)
∗ as a chain complex has the form

0 // B
(m)
m−1

d // Bm−2
dm−2 // Bm−3

// . . . // B1
d1 // B0

// 0

Since sm−1 surjects onto cok(∂) = Σm−2A, we see that the pull back diagram is
also a push out diagram. Therefore we obtain, by (3.6), the exact sequence

0 // Σm−1A
ι // B(m)

m−1

d // ker(dm−2)
q // Σm−2A // 0

An element in B
(m)
m−1 is a pair (H, x) with x ∈ ker(dm−2) and H : sm−2 ⇒ 0 in the

groupoid [[A]]S
m−2

, so that d(H, x) = x. We have canonical elements

(4.3) et
m−1 ∈ B

(m)
m−1, t ≥ 0,

with e0
m−1 = ι(Σm−11) and, for t > 0,

{

d(et
m−1) = p(−1)m−1et−1

m−1,

sm−1(e
t
m−1) = 0.

We call a graded set Em−1 a generating set for B
(m)
m−1 if there is a function

(4.4) e′m−1 : Em−1 → B
(m)
m−1

with the following properties. Let

e = em−1 : G∗

∐

T (E0, . . . , Em−1)→ B
(m)
∗
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be the algebra map which is the identity in dimension < m− 1 and, in dimension
m− 1, is given by

e
(

[1]m−1[p]t
)

= et
m−1, t ≥ 0,

e(x) = e′m−1(x) for x ∈ Em−1.

We say that e is generating if e is surjective in dimension m − 1. Now assume

E0, . . . , Em−2 are given and the m–algebra B
(m)
∗ is constructed with the properties

in (4.2). Then we choose a generating set Em−1 of B
(m)
m−1 as in (4.4) and a lift sE

m−1

as in the commutative diagram

(4.5) Em−1

sE
m−1

���
�

�

�

�

�

�

e′

m−1 // B(m)
m−1

sm−1

��

[[A]]S
m−2

01

[[A0]]
Im−1

[[A]]D
m−1

0∼=

λ∗

oo

π

OOOO

Accordingly, there are functions sE
k for k ≤ m− 1 by induction. By the multiplica-

tion (3.5), the functions sE
0 . . . sE

m−1 define a unique monoid map

sMon
∗ : Mon(E0, . . . , Em−1)→

(

[[A]]I
k

0

)

k≥0
.

We now define

(4.6) Bm−1 =
(

G∗

∐

T (E0, . . . , Em−1)
)

m−1

and we define dm−1 by the composite

dm−1 : Bm−1
e
−→ B

(m)
m−1

d
−→ Bm−2,

where we use e in (4.4). Moreover, we define

(4.7) sB
m−1 : Bm−1 −→ [[A]]I

m−1

0

by the G–linear map which, on basis elements (4.1), is given by products of

sB
m−1(αi) = sMon

∗ (αi) for αi ∈Mon(E0, . . . , Em−1),
sB

m−1([p]t) = 0 for t > 0,
sB

m−1([1]s) = λ∗q∗([1]s),

where [1]s ∈ [[A]]S
s

0 is given by the s–fold product of the strict element [1] in
(3.6). Here we use q∗ in Lemma 3.7 and λ∗ in (3.5). However, the map sB

∗ is
not multiplicative, that is, for x, y ∈ B∗ with x · y ∈ Bm−1, the element sB

∗ (x · y)
does not coincide with the product sB

∗ (x) · sB
∗ (y). We obtain the following diagram



A CONJECTURE ON HOMOTOPY GROUPS OF SPHERES 11

extending (4.2).

(4.8) ker(dm−1)��

��

sm−1 // [[A]]S
m−1

0��

��
Bm−1

(λ∗)−1sB
m−1

++
//

dm−1

��

B
(m)
m−1

//

d
zzttt

tt
tt

tt
t

[[A]]S
m−2

0

∂ %%LLLLLLLLLL
[[A]]D

m−1

0
oo

ι∗

��
ker(dm−2) sm−2

// [[A]]S
m−2

0

The columns on the left hand side and on the right hand side are exact. The
diagram, however, does not commute, so that the map sm, as a restriction of
(λ∗)−1sB

m−1 is not defined directly.

Claim 4.1. For x ∈ Bm−1 there is a Γ–homotopy

Γx : sm−2dm−1(x)⇒ ι∗(λ∗)−1sB
m−1(x)

which, for x ∈ ker(dm−1), yields a homotopy

Γx : 0⇒ ι∗(λ∗)−1sB
m−1(x),

so that sm−1(x) = (λ∗)−1sB
m−1(x)�ΓX is defined. Here sm−1 is a homomorphism

of G–modules.

Using Claim 4.1, we define sm−1 in (4.8) and hence we define B
(m+1)
m by the pull

back (4.2). This defines B
(m+1)
∗ as a G–module. In order to define B

(m+1)
∗ as an

(m + 1)–algebra, we need the multiplication maps

(4.9)

B
(m+1)
m ⊗B0 −→ B

(m+1)
m

B0 ⊗B
(m+1)
m −→ B

(m+1)
m

Bi ⊗Bj −→ B
(m+1)
m for i + j = m, i < m, j < m.

An element in B
(m+1)
m is a pair (H, x) with x ∈ Bm+1 and H : sm−1(x)⇒ 0 in the

groupoid [[A]]S
m−1

. For y ∈ B0 the products (H, x) · y and y · (H, x) are given by
the Γ–tracks

Γ(x, y) : sm−1(x) ◦ s0(y) ⇒ sm(x · y)
Γ(y, x) : s0(y) ◦ sm−1(x) ⇒ sm(y · x),

that is, we set

(H, x) · y =
(

H ◦ s0(y)�Γ(x, y)op, x · y
)

y · (H, x) =
(

s0(y) ◦H�Γ(y, x)op, y · x
)

.

Here the product of H and s0(y) is given by (3.3).
Moreover, for x ∈ Bi, y ∈ Bj with i+j = m, i < m, j < m we obtain the product

x · y =
(

H(x, y), d(x · y)
)

where

d(x · y) = (dx) · y + (−1)ix · (dy).

Here the track H(x, y) : sm−1

(

d(xy)
)

⇒ 0 is the composite

H(x, y) = π(λ∗)−1
(

sB
i (x) ◦ sB

j (y)
)

�Γ(x, y)op,

where the Γ–track is of the form

Γ(x, y) : ι∗(λ∗)−1
(

sB
i (x) ◦ sB

j (y)
)

⇒ sm−1

(

d(x · y)
)

.
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